Calabi-Yau objects in triangulated categories
نویسندگان
چکیده
منابع مشابه
Calabi-Yau triangulated categories
We review the definition of a Calabi-Yau triangulated category and survey examples coming from the representation theory of quivers and finite-dimensional algebras. Our main motivation comes from the links between quiver representations and Fomin-Zelevinsky’s cluster algebras. Mathematics Subject Classification (2000). Primary 18E30; Secondary 16D90, 18G10.
متن کاملAcyclic Calabi-yau Categories
We prove a structure theorem for triangulated Calabi-Yau categories: An algebraic 2-Calabi-Yau triangulated category over an algebraically closed field is a cluster category iff it contains a cluster tilting subcategory whose quiver has no oriented cycles. We prove a similar characterization for higher cluster categories. As an application to commutative algebra, we show that the stable categor...
متن کاملAcyclic Calabi-Yau categories are cluster categories
Let k be a field and Q a finite quiver without oriented cycles. Let kQ be the path algebra of Q and mod kQ the category of k-finite-dimensional right kQ-modules. The cluster category CQ was introduced in [1] (for general Q) and, independently, in [4] (for Q of type An). It is defined as the orbit category of the bounded derived category D(mod kQ) under the action of the automorphism Σ−1 ◦ S, wh...
متن کاملObjects in Triangulated Categories
We introduce the Calabi-Yau (CY) objects in a Hom-finite Krull-Schmidt triangulated k-category, and notice that the structure of the minimal, consequently all the CY objects, can be described. The relation between indecomposable CY objects and Auslander-Reiten triangles is provided. Finally we classify all the CY modules of selfinjective Nakayama algebras, determining this way the self-injectiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2009
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-09-04682-0